Culture modulates brain activity during empathy with anger

Moritz de Greck a,⁎, Zhenhao Shi a, Gang Wang a, Xiangyu Zuo a, Xuedong Yang b, Xiaoying Wang b, Georg Northoff c, Shihui Han a,⁎

a Department of Psychology, Peking University, Beijing, China
b Department of Radiology, Peking University First Hospital, Beijing, China
c Institute of Mental Health Research, University of Ottawa, Ottawa, Canada

ARTICLE INFO

Article history:
Received 29 April 2011
Revised 3 September 2011
Accepted 20 September 2011
Available online 29 September 2011

Keywords:
fMRI
Transcultural
Emotion
Empathy
Anger

ABSTRACT

Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger—an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast ‘intentional empathy for familiar angry’–‘baseline’ revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast ‘intentional empathy for familiar angry’–‘baseline’. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle insula.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Interdependence describes a lifestyle, in which an individual is attuned to the social environment, adjusts his behavior to others, and takes the perspective of others. Independence, in contrast, refers to a lifestyle, in which an individual primarily refers to his own thoughts and feelings (Chiao et al., 2009; Markus and Kitayama, 2010). Typically, most Asian cultures engage an interdependent lifestyle, whereas in most Western cultures an independent lifestyle is prevalent (Chiao et al., 2009; Markus and Kitayama, 1991). Interestingly, both lifestyles do not completely exclude each other. Rather, they can coexist to some degree in one and the same individual (Singelis, 1994). Interdependent and independent lifestyles are considered to be responsible for a large amount of cultural differences in emotional experience, cognition and behavior (Markus and Kitayama, 1991).

A key concept, which is appreciated very differently in interdependent and independent cultures, is harmony. Harmony, which describes the balance, positive mood and social peace within a group, is important in interdependent cultures and often rooted in their cultural traditions (Markus and Kitayama, 1991; Uno, 1991 as described in Kim and Markus, 1999). Independent cultures, in contrast, rather stress the importance of uniqueness (Kim and Markus, 1999).

For instance, as shown by Kwan et al. (1997), relationship harmony is more important for life satisfaction in interdependent cultures (in this study Hong Kong students) compared to independent cultures (namely US students). In independent cultures (such as the United States or Germany), in contrast, life satisfaction is closer related to the affective well-being of the individuals (Suh et al., 1998). Interestingly, in the study conducted by Suh et al. Germans showed the strongest correlation of affective well-being and life satisfaction.
In addition, two studies showed that, relative to individuals from independent cultures, individuals in interdependent cultures can tolerate less anger in individuals from interdependent cultures (Cheung and Park, 2010; Park et al., 2010). Moreover, there are differences between interdependent and independent cultures concerning the suppression of anger. The suppression of anger can lead to depression in individuals from interdependent cultures (and is related to extreme situations). Moreover, in interdependent cultures (in this case China), the control of anger is related to high social functioning of school children (Zhou et al., 2004). In addition, individuals from interdependent cultures tolerate less anger. When anger was expressed in simulated negotiations (as part of recent study conducted by Adam and colleagues), Asians and Asian Americans made smaller concessions. In contrast, European Americans made larger concessions (Adam et al., 2010).

Moreover, there are differences between interdependent and independent cultures concerning the suppression of anger. The suppression of anger can lead to depression in individuals from interdependent cultures; however, the link between suppressed anger and depression is significantly stronger in interdependent cultures (Cheung and Park, 2010; Park et al., 2010).

Interestingly, there is a special psychiatric disorder “hwa-byung” (English: “fire disease” or “anger disease”), which is explicitly associated with the suppression of anger and strictly bound to the Korean (i.e. interdependent) culture (Min, 2008; Min et al., 2009).

A suitable approach to investigate cultural differences in emotional processing is to implement an empathy task. Regarding this, empathy implies the capability to understand and share the emotional states of other creatures without losing the ability to differentiate emotion and familiarity. (As recently shown by Xu et al. (2009), in particular familiarity can significantly modulate empathic processes.) We recruited two groups of healthy subjects from an interdependent culture (namely China) and from an independent culture (namely Germany). With regard to the avoiding attitude towards anger prevalent in interdependent cultures, we hypothesized less activity in Chinese subjects (compared to German subjects) during empathy with anger in regions typically involved in emotional empathy and emotional processing such as insula, anterior cingulate cortex, inferior frontal cortex and superior temporal sulcus (Blair et al., 1999; Carr et al., 2003; de Greck et al., 2011; Hooker et al., 2008, 2010; Jabbi and Keyser, 2008; Jabbi et al., 2007; Ochsner et al., 2004a; Phillips et al., 1997; Sprengelmeyer et al., 1998; Wicker et al., 2003).

In addition, we expected more activity in Chinese in brain regions connected to emotion regulation, such as the prefrontal cortex (MacDonald et al., 2000; Ochsner and Gross, 2005; Ochsner et al., 2004b; Vanderhasselt et al., 2006).

Finally, considering the familiarity of empathy and TOM, we expected stronger activity in the right TPJ in German subjects (Kobayashi et al., 2007).

Methods

Participants

A group of Chinese students (n = 16) and a group of German students (n = 16) were recruited in this study. Both groups were scanned in Beijing, China, using the same MRI scanner. Table 1 illustrates subjects’ information about the two cultural groups. The study was approved by a local ethics committee. After a detailed explanation of the study design and any potential risks, all subjects gave their written informed consent. All subjects were reimbursed for their participation.

Paradigm

Experimental design

The fMRI experiment was divided into 7 blocks of 312 s duration each. Prior to entering the scanner each subject read detailed information of the paradigm in their native language and completed a couple of trial runs in order to familiarize fully with the task. While lying in the scanner, the stimuli were displayed using the software package ‘Presentation’ (Neurobehavioral Systems, Albany, CA, USA) and were projected onto a matte screen via an LCD projector, visible through a mirror mounted on the head coil. Each block started with a 10 s pause to control for epi-saturation effects. A total number of 24 trials (12 intentional empathy trials and 12 trials skin color evaluation trials) were presented in a randomized order in each block. Fig. 1 illustrates the intentional empathy task, the control task and the baseline condition.

Stimuli

Two sets of stimuli were used for Chinese and German subjects. Each stimulus set consisted of 12 different face stimuli – four stimuli (two female, two male) of each condition (namely ‘familiar angry’, ‘familiar happy’, ‘unfamiliar angry’, ‘unfamiliar happy’).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of the two subject groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chinese</td>
</tr>
<tr>
<td>Number</td>
<td>16</td>
</tr>
<tr>
<td>Age</td>
<td>Mean 22.9 years</td>
</tr>
<tr>
<td></td>
<td>95% CI: 22.1–23.5 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 10 females 6 m</td>
</tr>
<tr>
<td>Culture</td>
<td>Han Chinese raised in China by Chinese parents</td>
</tr>
<tr>
<td>Occupation</td>
<td>16 students</td>
</tr>
</tbody>
</table>

^a The 95% confidence interval.

^b There was no significant difference regarding the age of both groups (t(30) = 0.681, P_{two-tailed} = 0.501).

^c In addition, there was no significant difference with regard to the gender distribution in both groups (χ²(1) = 1, P = 0.317).
familiar neutral', and 'unfamiliar neutral'). Stimuli for German subjects for the conditions 'familiar angry' and 'familiar neutral' were taken from the "Japanese and Caucasian Facial Expressions of Emotion (JACFEE) and Neutral Faces (JACNeuF)" — battery provided by Matsumoto and Ekman (1988). Stimuli for German subjects for the condition 'unfamiliar neutral' were photographed and preprocessed for presentation by our own group (de Greck et al., 2011). These pictures were taken in front of a comparable background and under comparable conditions to match them as close as possible to the pictures taken from the JACNeuF battery.

Stimuli for Chinese subjects for the condition 'familiar neutral' were exactly those stimuli, as presented to German subjects in the condition 'unfamiliar neutral'. Analogously, stimuli for Chinese subjects for the condition 'unfamiliar neutral' were exactly the same stimuli as presented to German subjects in the condition 'familiar neutral' (i.e. these stimuli were taken from the JACNeuF-picture battery). Stimuli for Chinese subjects for the condition 'familiar angry' were also photographed and preprocessed for presentation by our own group, as described above. Each stimulus was presented twice during each block: once during intentional empathy, once during skin color evaluation.

The term "familiar" as used in our study refers to the concept of "race-based familiarity" and not "personal familiarity" (Liew et al., 2011).

Psychological scales

Interpersonal Reactivity Index (IRI)

The "Interpersonal Reactivity Index" (IRI, Davis, 1983) is a commonly used self evaluation questionnaire to measure the subjective impression of different empathic skills. The IRI uses four sub-scales related to ‘empathic fantasy’, ‘empathic concern’, ‘personal distress’, and ‘perspective taking’.

Self-Construal Scale (SCS)

The "Self-Construal Scale" (SCS, Singelis, 1994) bases on the concept of interdependent and independent self-construals, which was introduced by Markus and Kitayama (1991, 2010). The SCS implements two scales related to ‘interdependence’ and ‘independence’.

Behavioral data analysis

Behavioral data where analyzed using the software packages "PERL" (http://www.perl.org) and "R" (http://www.r-project.org/, R Development Core Team, 2009). Repeated measurements Analyses of Variance (ANOVA)s and post-hoc independent samples t-tests were used to test for significant differences; Spearman correlations were implemented to analyze associations between different behavioral scores.
fMRI data acquisition

The study was conducted using a General Electrics 3 Tesla Magnetic Resonance Imaging Scanner. Functional data (24 slices parallel to the AC–PC plane, slice thickness 5 mm, TR 2000 ms, TE 30 ms, flip angle α = 90°, 64 × 64 voxels per slice with 3.75 mm × 3.75 mm × 5 mm) were acquired in seven scanning sessions containing 156 volumes per session for each subject. In addition, T1-weighted images of each subject were recorded.

fMRI data analysis

The statistical analysis of the fMRI data was performed using the software packages “Analysis of Functional Neuroimages” (AFNI, http://afni.nimh.nih.gov/afni/, Cox, 1996), “Python” (http://www.python.org), “PERL” (http://www.perl.org) and “R” (http://www.r-project.org); R Development Core Team, 2009).

The first three volumes were discarded to compensate for saturation effects. All functional images were slice-time corrected with reference to the acquisition time of the first slice and corrected for motion artifacts by realignment to the first volume. The images were spatially normalized to a standard EPI-template provided by AFNI (“TT_EPI”) and re-sampled to 3 mm × 3 mm × 3 mm. Finally, all functional images were smoothed with an isotropic 6 mm full-width half maximum Gaussian kernel. T1-weighted images of each subject were normalized to a standard T1-template provided by AFNI (“TT_avg152T1”).

For each subject, regressors of interest were created by the convolution of a canonical, fixed shape hemodynamic response function with the according stimulus time functions (Josephs et al., 1997). Regarding this, all relevant periods (namely viewing periods with correct later responses for both tasks and all three conditions, evaluation periods with correct responses for both tasks and all three conditions, viewing and evaluation periods for tasks with incorrect later responses for both tasks and all three conditions, viewing and evaluation periods for tasks with incorrect responses, and the baseline event) were included in the model. In addition, six movement parameters resulting from motion correction, as well as nine regressors for the 3rd degree polynomial model of the baseline of each block were included as regressors to account for any residual effects of head motion and baseline fluctuations respectively. Contrast images were calculated by employing linear contrasts to the parameter estimates for the regressors of each event. The resulting contrast images were then submitted to a second level random-effects analysis. Here, one-sample t-tests (comparing the 16 Chinese and the 16 German subjects) and independent two-sample t-tests (comparing the 16 Chinese and the 16 German subjects) were applied (Friston et al., 1994). To control for the multiple testing problem, we performed a false discovery rate correction (Nichols and Hayasaka, 2003) and calculated family-wise error probabilities. The anatomical localization and labeling of significant activations were assessed with reference to the standard stereotactic atlas of Talairach and Tournoux, (1988) and by superimposition of the group contrast images on a mean brain generated by an average of each subject’s normalized T1-weighted image. In a second step, we performed a statistical analysis of the raw fMRI signals. Using the significant clusters from the different contrasts as regions of interest, we extracted fMRI signal timecourses from activations found in the second level analysis using sphere shaped regions of interest with a radius of 5 mm. The timecourses were linearly interpolated and normalized with respect to a time window ranging from 0 s to 30 s after the onset of each event. fMRI signal changes of every event were calculated with regard to the fMRI signal value of the onset of the according event. Mean normalized fMRI signal values from two following time steps (6 s to 8 s after onset of the according event) were included in the statistical analysis. We used paired t-tests, to analyze the effects of the factors ‘task’ (‘intentional empathy for familiar angry’ + ‘intentional empathy for familiar neutral’ + ‘intentional empathy unfamiliar neutral’ = ‘control for familiar angry’ + ‘control for familiar neutral’ + ‘control for unfamiliar neutral’), ‘emotion’ (‘intentional empathy for familiar angry’ – ‘intentional empathy for familiar neutral’), and ‘familiarity’ (‘intentional empathy for familiar neutral’ – ‘intentional empathy unfamiliar neutral’). In addition, Spearman correlations were applied to analyze the association of different behavioral scores (namely the intra-scanner empathy ratings for angry faces, the IRI ‘personal distress’ score and the SCS ‘interdependence’ score) with hemodynamic responses of our regions of interest.

Results

Behavioral results

Intra-scanner empathy ratings

We used a 2 × 3 factorial repeated measure analysis of variance (ANOVA) with Group (Chinese vs. Germans) as a between-subjects factor and Condition (‘familiar angry’, ‘familiar neutral’, and ‘unfamiliar neutral’) as a within-subjects factor to analyze mean intra-scanner empathy ratings. We detected a significant main effect of Condition (F(2, 60) = 50.793, p < 0.001**) and a significant interaction of Group × Condition (F(2, 60) = 4.017, p = 0.023**); the main effect for Group was not significant (F(1, 30) = 1.209, p = 0.280). Post-hoc t-tests revealed a significant group difference only for the condition ‘unfamiliar neutral’. German subjects rated higher subjective impression of empathy for unfamiliar neutral faces compared to Chinese subjects (t(30) = 2.782, Ptwo-tailed = 0.009**), while there were no differences between both groups for the conditions ‘familiar angry’ (t(30) = 0.339, Ptwo-tailed = 0.737) and ‘familiar neutral’ (t(30) = 0.317, Ptwo-tailed = 0.764; Fig. 2a).

Interpersonal Reactivity Index (IRI)

The 2 × 4 factorial ANOVA with Group (Chinese vs. Germans) as a between-subjects factor and Sub-scale (‘empathic fantasy’, ‘empathic concern’, ‘personal distress’, and ‘perspective taking’) as a within-subjects factor revealed a significant effect of Sub-scale (F(3, 90) = 46.634, p < 0.001**) and a significant interaction of Group × Sub-scale (F(3, 90) = 3.418, p = 0.021*). The main effect of Group was not significant (F(1, 30) = 0.039, p = 0.844). Post-hoc t-tests showed significant higher ratings of Chinese for ‘personal distress’ (t(30) = 2.496, Ptwo-tailed = 0.018**) but lower ratings of ‘empathic concern’ (t(30) = 1.235, Ptwo-tailed = 0.062**) compared to Germans. We did not find significant differences with regard to the IRI scales ‘empathic fantasy’ (t(30) = 0.689, Ptwo-tailed = 0.496) and ‘perspective taking’ (t(30) = 0.261, Ptwo-tailed = 0.786) though (Fig. 2b).

Subjects, who score high on ‘personal distress’ typically agree to the statements of the following kind: “I sometimes feel helpless when I am in the middle of a very emotional situation”, “Being in a tense emotional situation scares me”, and “I tend to lose control during emergencies”.

Subjects, who score high on ‘empathic concern’, in contrast, typically agree to these statements: "I often have tender, concerned feelings for people less fortunate than me”, “When I see someone being taken advantage of, I feel kind of protective towards him”, and “I would describe myself as a pretty soft-hearted person” (Davis, 1983).

Self-Construct Scale (SCS)

Independent samples t-tests confirmed higher ratings of Chinese compared to Germans in the ‘interdependence’-scale (t(30) = 3.469, Ptwo-tailed = 0.002**), while both groups did not differ with regard to the ‘independence’-scale (t(30) = 0.710, Ptwo-tailed = 0.483; Fig. 2c).

Subjects, who score high on the ‘interdependence’-scale, typically agree to the statements which include the following: “It is important for me to maintain harmony within my group”, “I will sacrifice my self-interest for the benefit of the group I am in”, and...
We found a signification scores predicted their intra-scanner empathy ratings for the condition 'personal distress', and 'empathic concern' compared to Chinese subjects. However, we did not find significant differences with regard to the IRI scale 'empathic fantasy' and 'perspective taking'. c. Self-Construal Scale (SCS). Chinese subjects scored significantly higher with regard to the 'interdependence' scale of the SCS. There was, however, no difference with regard to the 'independence' scale. d. Correlation between interdependence and intra-scanner empathy ratings. Subjects' interdependence scores predicted their intra-scanner empathy ratings for the condition 'familiar angry'. Subjects, who described themselves as interdependent, reported less subjective empathic understanding for angry faces during the experiment.

"Even when I strongly disagree with group members, I avoid an argument" (Singelis, 1994).

Correlation analyses of behavioral scores
We tested for correlations between the different behavioral scores (namely the intra-scanner empathy ratings for 'familiar angry', 'personal distress', and 'interdependence') using Spearman correlations. We found a significant negative correlation between intra-scanner empathy ratings during 'familiar angry' and 'interdependence' scores ($r_{\text{Spearman}} = -0.354$, $p_{\text{two-tailed}} = 0.047$; Fig. 2d). We did, however, neither find a significant correlation of 'personal distress' scores with 'interdependence' scores ($r_{\text{Spearman}} = -0.070$, $p_{\text{two-tailed}} = 0.704$) nor a correlation of 'personal distress' scores with intra-scanner empathy ratings ($r_{\text{Spearman}} = 0.245$, $p_{\text{two-tailed}} = 0.176$).

fMRI results
Intentional empathy for familiar angry’- ’baseline’ — transcultural constants
We implemented a whole brain analysis of all 32 subjects to investigate the transcultural constants of the contrast 'intentional empathy for familiar angry' - 'baseline'. Regarding this, we calculated voxel-wise one-sample t-tests for both groups and implemented an inclusive masking analysis that included only those clusters which showed significant activity in both groups. Brain regions with transcultural constant brain activity included the bilateral inferior frontal gyrus, the bilateral supplementary motor area, bilateral anterior insula, bilateral parahippocampal gyrus, and other areas (see Table 2).

Intentional empathy for familiar angry’- ’baseline’ — cultural differences
To investigate cultural differences in empathy with anger, we implemented voxel-wise independent-samples t-tests using the contrast 'intentional empathy for familiar angry' - 'baseline'. Here, we found one region with stronger hemodynamic responses in Chinese subjects: the left dorsolateral prefrontal cortex (DLPFC). In addition, four regions showed stronger hemodynamic responses in German subjects: the right temporoparietal junction (TPJ), the right inferior temporal gyrus (ITG), the right superior temporal gyrus (STG), and the left middle insula (MI). See Table 3 and Fig. 3 for details.

Correlation of hemodynamic responses with behavioral scores
We used Spearman correlation analyses to investigate the association of hemodynamic responses during 'intentional empathy for familiar angry' (more exact: the difference between 'intentional empathy for familiar angry' and 'baseline') and behavioral scores (namely the 'personal distress' score of the IRI and the 'interdependence' score of the SCS). We found a significant positive correlation of 'personal distress' scores with hemodynamic responses in the left DLPFC (see Fig. 3a). In addition, we detected significant negative correlations of 'interdependence' scores with hemodynamic responses in the right ITG (see Fig. 3c), the right STG (see Fig. 3d), and the left MI (see Fig. 3e).

Moreover, we tested for correlations of intra-scanner empathy ratings during anger and hemodynamic responses of the five regions. We detected a marginal correlation of empathy ratings and hemodynamic responses from the left DLPFC ($r_{\text{Spearman}} = 0.304$, $p = 0.069$) but not for the right TPJ ($r_{\text{Spearman}} = 0.031$, $p = 0.867$), the right ITG ($r_{\text{Spearman}} = 0.148$, $p = 0.418$), the right STG ($r_{\text{Spearman}} = 0.025$, $p = 0.892$), or the left MI ($r_{\text{Spearman}} = 0.276$, $p = 0.126$).

Modulation of hemodynamic responses by task
We used paired t-tests ('intentional empathy for familiar angry' + 'intentional empathy for familiar neutral' + 'intentional empathy for familiar angry').
empathy for unfamiliar neutral) [‘control for familiar angry’ + ‘control for familiar neutral’ + ‘control for unfamiliar neutral’] to investigate whether hemodynamic responses of the regions listed in Tables 2 and 3 were modulated by the task. Several regions with transcultural constant activity showed stronger hemodynamic responses during ‘intentional empathy’ compared to ‘control’: the bilateral supplementary motor area (SMA; 2.04, 2.05), the bilateral anterior insula (AI; 2.06, 2.16), the bilateral putamen (2.07, 2.17), the bilateral posterior midbrain (2.20, 2.21), the left middle temporal gyrus (MTG, 2.23), and others (see Table 2). The right STG (3.04) and left MI (3.05), which showed stronger activity in German subjects, also showed stronger activity during ‘intentional empathy’ (Table 3). In addition, several regions with transcultural constant activity showed the opposite effect (i.e. decreased hemodynamic responses during ‘intentional empathy’ compared to ‘control’): the right middle frontal gyrus (2.03), the left supramarginal gyrus (2.12), and the bilateral precuneus (2.13, 2.19) (Table 2). The right TPJ (3.02), which was stronger activated in Germans, also showed less activity during ‘intentional empathy’ (statistical trend – Table 3). In addition, there were a number of regions without modulation by task (see Tables 2 and 3).

Modulation of hemodynamic responses by emotion

We used paired t-tests (‘intentional empathy for familiar angry’—‘intentional empathy for familiar neutral’) to investigate whether hemodynamic responses of regions listed in Tables 2 and 3 showed significant differences between Chinese and Germans in the contrast ‘intentional empathy for familiar angry’—‘baseline’.

Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Region</th>
<th>BA</th>
<th>x, y, z [mm]</th>
<th>n</th>
<th>pFWE</th>
<th>pFWE</th>
<th>Modulation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>Left</td>
<td>Inferior frontal gyrus</td>
<td>6</td>
<td>-42</td>
<td>-3</td>
<td>24</td>
<td>2342</td>
</tr>
<tr>
<td>2.02</td>
<td>Left</td>
<td>Inferior frontal gyrus</td>
<td>45</td>
<td>-39</td>
<td>-24</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2.03</td>
<td>Right</td>
<td>Middle frontal gyrus</td>
<td>6</td>
<td>27</td>
<td>9</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>2.04</td>
<td>Left</td>
<td>Supplementary motor area</td>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>2.05</td>
<td>Right</td>
<td>Supplementary motor area</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>2.06</td>
<td>Left</td>
<td>Anterior insula</td>
<td>13</td>
<td>-28</td>
<td>-26</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2.07</td>
<td>Left</td>
<td>Putamen</td>
<td>-18</td>
<td>-12</td>
<td>-6</td>
<td>8</td>
<td>-12</td>
</tr>
<tr>
<td>2.08</td>
<td>Right</td>
<td>Occipital cortex</td>
<td>17, 18</td>
<td>33</td>
<td>84</td>
<td>-18</td>
<td>1241</td>
</tr>
<tr>
<td>2.09</td>
<td>Right</td>
<td>Cerebellum</td>
<td>36</td>
<td>-57</td>
<td>-30</td>
<td>8</td>
<td>-57</td>
</tr>
<tr>
<td>2.10</td>
<td>Left</td>
<td>Occipital cortex</td>
<td>17, 18</td>
<td>-15</td>
<td>90</td>
<td>-18</td>
<td>780</td>
</tr>
<tr>
<td>2.11</td>
<td>Left</td>
<td>Cerebellum</td>
<td>-39</td>
<td>51</td>
<td>-33</td>
<td>8</td>
<td>-39</td>
</tr>
<tr>
<td>2.12</td>
<td>Left</td>
<td>Supramarginal gyrus</td>
<td>40</td>
<td>-30</td>
<td>51</td>
<td>30</td>
<td>627</td>
</tr>
<tr>
<td>2.13</td>
<td>Left</td>
<td>Precuneus</td>
<td>7</td>
<td>-24</td>
<td>72</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>2.14</td>
<td>Left</td>
<td>Cuneus</td>
<td>7</td>
<td>-6</td>
<td>75</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>2.15</td>
<td>Right</td>
<td>Inferior frontal gyrus</td>
<td>9</td>
<td>39</td>
<td>-6</td>
<td>24</td>
<td>470</td>
</tr>
<tr>
<td>2.16</td>
<td>Right</td>
<td>Anterior insula</td>
<td>13</td>
<td>30</td>
<td>-24</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2.17</td>
<td>Right</td>
<td>Putamen</td>
<td>21</td>
<td>-12</td>
<td>0</td>
<td>8</td>
<td>-12</td>
</tr>
<tr>
<td>2.18</td>
<td>Right</td>
<td>Cuneus</td>
<td>18</td>
<td>24</td>
<td>60</td>
<td>18</td>
<td>128</td>
</tr>
<tr>
<td>2.19</td>
<td>Right</td>
<td>Precuneus</td>
<td>19</td>
<td>30</td>
<td>66</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>2.20</td>
<td>Left</td>
<td>Posterior midbrain</td>
<td>-3</td>
<td>33</td>
<td>-18</td>
<td>58</td>
<td>33</td>
</tr>
<tr>
<td>2.21</td>
<td>Right</td>
<td>Posterior midbrain</td>
<td>7</td>
<td>33</td>
<td>-17</td>
<td>58</td>
<td>33</td>
</tr>
<tr>
<td>2.22</td>
<td>Right</td>
<td>Parahippocampal gyrus</td>
<td>36</td>
<td>24</td>
<td>33</td>
<td>-12</td>
<td>25</td>
</tr>
<tr>
<td>2.23</td>
<td>Left</td>
<td>Middle temporal gyrus</td>
<td>37</td>
<td>-48</td>
<td>45</td>
<td>-6</td>
<td>15</td>
</tr>
<tr>
<td>2.24</td>
<td>Right</td>
<td>Parahippocampal gyrus</td>
<td>36</td>
<td>-21</td>
<td>33</td>
<td>-15</td>
<td>14</td>
</tr>
<tr>
<td>2.25</td>
<td>Left</td>
<td>Thalamus</td>
<td>-6</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

The table lists the peak voxels of all clusters which showed significant activation (p[FWE] ≤ 0.05) in the contrast ‘intentional empathy for familiar angry’—‘baseline’ for both groups (inclusive masking). Clusters smaller than 10 voxels were not considered. (x, y, z) are coordinates referring to the Talairach and Tournoux stereo-tactic space; n reflects the number of significant voxels inside the cluster; p[FWE](C) and p[FWE](G) show the probability that a cluster of the given size might appear as a false positive in the group of Chinese (C) and Germans (G); the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors ‘task’, ‘emotion’, and ‘familiarity’; e-c: ‘intentional empathy’—‘control’; a-n: ‘intentional empathy for familiar angry’—‘intentional empathy for familiar neutral’; f-u: ‘intentional empathy for familiar neutral’—‘intentional empathy for unfamiliar neutral’; *: p < 0.1; **: p < 0.05; ***: p < 0.001.

Table 3

<table>
<thead>
<tr>
<th>No.</th>
<th>Region</th>
<th>x, y, z [mm]</th>
<th>t</th>
<th>n</th>
<th>p[FWE]</th>
<th>Modulation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>Left</td>
<td>Dorsolateral prefrontal cortex</td>
<td>9</td>
<td>-44</td>
<td>-8</td>
<td>32</td>
</tr>
<tr>
<td>3.02</td>
<td>Right</td>
<td>Temporo-parietal junction</td>
<td>40</td>
<td>55</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>3.03</td>
<td>Right</td>
<td>Inferior temporal gyrus</td>
<td>20</td>
<td>57</td>
<td>16</td>
<td>-18</td>
</tr>
<tr>
<td>3.04</td>
<td>Right</td>
<td>Superior temporal gyrus</td>
<td>22</td>
<td>53</td>
<td>-12</td>
<td>-7</td>
</tr>
<tr>
<td>3.05</td>
<td>Left</td>
<td>Middle insula</td>
<td>13</td>
<td>-41</td>
<td>-1</td>
<td>-9</td>
</tr>
</tbody>
</table>

The table presents the centers of mass of all clusters which showed significant differences between Chinese and Germans in the contrast ‘intentional empathy for familiar angry’—‘baseline’ voxels with p[FWE] < 0.05 were masked. In addition, voxels were masked, which were not included in a cluster of minimum 10 voxels. (x, y, z) are coordinates referring to the Talairach and Tournoux stereo-tactic space; n reflects the number of significant voxels inside the cluster; p[FWE] shows the probability that a cluster of the given size might appear as a false positive; the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors ‘task’, ‘emotion’, and ‘familiarity’; e-c: ‘intentional empathy’—‘control’; a-n: ‘intentional empathy for familiar angry’—‘intentional empathy for familiar neutral’; f-u: ‘intentional empathy for familiar neutral’—‘intentional empathy for unfamiliar neutral’; *: p < 0.1; **: p < 0.05; ***: p < 0.001.)
were modulated by emotion. A number of regions, including the right SMA (2.05), the left MTG (2.23), the left putamen (2.07), the left pre-cuneus (2.13), the left cuneus (2.14), the right AI (2.16), and others, showed stronger hemodynamic responses during intentional empathy with angry faces compared to neutral faces (see Table 2).

In addition, several regions of the contrast ‘intentional empathy for familiar angry’«baseline’ did not show any modulation emotion (Table 2). Many of these regions are hence also listed for the contrast ‘intentional empathy for familiar neutral’«baseline’ (Table 4) with similar or identical coordinates (for instance the left and right inferior frontal cortex (2.01/4.01, 2.15/4.03), the left and right occipital cortex (2.10/4.12, 2.08/4.10), the left and right cerebellum (2.11/4.13, 2.09/4.11), or the left and right parahippocampal gyrus (2.24/4.23, 2.22/4.22)).

The same was the case for some of those regions, which showed different activity in both groups. The left DLPFC (3.01/5.01), the right inferior temporal gyrus (3.03/5.03), and the left MI (3.05/5.02) showed activity in both contrasts (‘intentional empathy for familiar angry’«baseline’ (Table 3) and ‘intentional empathy for familiar neutral’«baseline’ (Table 5)).

Modulation of hemodynamic responses by familiarity

Paired t-tests (‘intentional empathy for familiar neutral’«intentional empathy for unfamiliar neutral’) were applied to investigate whether hemodynamic responses of regions listed in Tables 2 and 3 were modulated by ‘familiarity’. This was the case for a number of regions, which showed stronger hemodynamic responses for the unfamiliar neutral compared to the familiar neutral condition: the right SMA (2.05), the right occipital cortex (2.08), the right AI (2.16), the bilateral midbrain (2.20, 2.21), and the right parahippocampal gyrus (2.22).

In addition, two regions with culture-related differences in hemodynamic responses – the right STG (3.04) and the right MI (3.05) – showed stronger responses during the ‘unfamiliar’ condition when compared to the ‘familiar condition’.

Discussion

Summary of findings

Questionnaire measurements indicate differences in empathy and self-construals between the subject groups. Chinese subjects reported more ‘personal distress’ and more ‘interdependence’ relative to German subjects.

Comparing brain activity during empathy with anger of the two subject groups showed both transcultural constants and cultural differences. Cultural constants included increased activity associated with intentional empathy for anger in the bilateral inferior frontal gyrus (IFG), left supplementary motor area (SMA), left anterior insula (AI), and other brain regions. Cultural differences in empathy with anger were observed in the left dorsolateral prefrontal cortex (DLPFC) where Chinese subjects showed stronger hemodynamic responses compared to German subjects. Subjects’ hemodynamic responses in this region correlated with their ‘personal distress’ scores and their intra-scanner empathy ratings for the ‘familiar angry’ faces (statistical trend). German subjects showed stronger hemodynamic responses associated with empathy for anger in the right temporo-parietal junction (TPJ), the right inferior temporal gyrus (ITG), the right superior temporal gyrus (STG), and the left middle insula (MI). There was a significant correlation of hemodynamic responses of the right ITG, right STG, and left MI with ‘interdependence’ scores.

The right STG and left MI revealed stronger hemodynamic responses during intentional empathy compared to control; whereas the right TPJ showed the opposite effect. The left DLPFC and the right ITG were not modulated by the task at all. None of the five regions with culturally different activity showed a significant modulation by emotion.

Brain regions with transcultural constant activity

Brain regions that were active in empathy for anger in both cultural groups and revealed stronger activity for the ‘intentional empathy’ task compared to the control task included the bilateral SMA, bilateral AI, and bilateral putamen – brain areas, which are well known for their involvement in empathy (Carr et al., 2003; Fan et al., 2011; Hooker et al., 2008, 2010; Jabbi and Keysers, 2008; Jabbi et al., 2007; Lamm et al., 2007; Mathur et al., 2010; Singer et al., 2004). In addition, we found areas with transcultural constant activity for the contrast ‘intentional empathy for familiar angry’«baseline’ in both groups, but less activity during ‘intentional empathy’ when compared to the control task. The left inferior frontal gyrus, left supramarginal gyrus and bilateral precuneus were among these regions.

Interestingly, we did not find increased activity of the amygdala for this contrast; in addition, the amygdala was not among those regions which revealed culturally different activity. In several previous studies the amygdala showed reliable activity during the processing of emotional (including angry) faces (Derrnli et al., 2009; Gur et al., 2002; Harriri et al., 2002; Loughhead et al., 2008; Whalen et al., 2001; Yang et al., 2002). However, a recent meta-analysis suggests, that the amygdala is not consistently involved in the processing of angry faces (Fusar-Poli et al., 2009). The lack of amygdala activity in our study might be explained by our task, which focused on empathic emotional sharing of the presented stimuli. It is likely that the instruction to intentionally share the emotional state of the presented angry models led to reduced hemodynamic responses in the amygdala, while we found significant activity in the bilateral IFG, bilateral SMA and bilateral AI.

Brain regions with culture-based differences in brain activity

As initially hypothesized, the left DLPFC showed stronger activity in Chinese subjects. In addition, its hemodynamic responses correlated with individual scores of ‘personal distress’ and intra-scanner empathy ratings (statistical trend). Since previous studies reported the involvement of the DLPFC in emotion regulation and inhibition (MacDonald et al., 2000; Ochsner and Gross, 2005; Ochsner et al., 2004b; Shackman et al., 2009; Vanderhasselt et al., 2006), one explanation of our finding is that the left DLPFC was activated by subjects with high ‘personal distress’ scores and high subjective impression of empathy to protect themselves against emotional over-arousal. The right TPJ showed stronger hemodynamic responses in Germans, a finding which is also in accordance with our initial hypotheses; however, hemodynamic responses did neither correlate with ‘personal distress’ nor ‘interdependence’ scores. The TPJ is known to be involved in the attribution of mental states towards others (“theory of mind”, TOM) in Western cultures (Castelli et al., 2000; Gallagher et al., 2000; Mitchell, 2008; Saxe and Kanwisher, 2003; Saxe and Powell, 2006; Saxe and Wexler, 2005).

Moreover, the (right) TPJ is also known for its role in attention shifting (Astafiev et al., 2006; Corbetta and Shulman, 2002; Corbetta et al., 2000; Kincade et al., 2005; Mitchell, 2008; Serences et al., 2005; Shulman et al., 2003) (see the paper of Mitchell (2008) for an overview about the overlap of brain activity related to TOM and attention shifting). Interestingly, in a study comparing children (at the age of 8 to 11 years) from interdependent and independent cultures (Japanese and Americans) during a non-verbal TOM task, Kobayashi et al. (2007) found the right TPJ with stronger hemodynamic responses in American children. The authors argued that diminished self-other differentiation, which is connected to interdependent cultures (Markus and Kitayama, 1991, 2010) might be the explanation for this finding. Indeed, the TPJ is also known for its involvement in self-agency and self-awareness (Decety and Grèzes, 2006; Farrer and Frith, 2002; Vogele et al., 2001). Unfortunately, in this study we did not test for self-other differentiation.

The role of the right TPJ is more complex, however: In a recent study investigating culture-based differences in brain activity during...
a) Left dorsolateral prefrontal cortex [−44, −8, 32]

b) Right temporo-parietal junction [55, 45, 31]

c) Right inferior temporal gyrus [57, 16, −18]

d) Right superior temporal gyrus [53, −12, −7]

e) Left middle insula [−41, −1, −9]
Table 4

<table>
<thead>
<tr>
<th>Region</th>
<th>BA x, y, z [mm]</th>
<th>n</th>
<th>(p_{\text{FWE}}(C))</th>
<th>(p_{\text{FWE}}(G))</th>
<th>Modulation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.01 Left Inferior frontal gyrus</td>
<td>-42 -3 24</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>Task</td>
</tr>
<tr>
<td>4.02 Left Inferior frontal gyrus</td>
<td>-39 -24 18</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>Emo</td>
</tr>
<tr>
<td>4.03 Right Inferior frontal gyrus</td>
<td>-45 -9 24</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>Fam</td>
</tr>
<tr>
<td>4.04 Right Middle orbital gyrus</td>
<td>-11 24 -42 6</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.05 Left Supplementary motor area</td>
<td>-6 6 -3 54</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.06 Right Supplementary motor area</td>
<td>9 -6 46</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.07 Left Anterior insula</td>
<td>-27 -27 18</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.08 Right Anterior insula</td>
<td>-30 -24 -1 6</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.09 Left Putamen</td>
<td>21 -9 3</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.10 Right Occipital cortex</td>
<td>17 18 33 84 18</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.11 right Cerebellum</td>
<td>36 57 -30</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.12 Left Occipital cortex</td>
<td>-18 9 -15</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.13 Left Cerebellum</td>
<td>39 54 -30</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.14 Left Cerebellum</td>
<td>36 78 -30</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.15 Left Angular gyrus</td>
<td>30 30 30 30</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.16 Left Precuneus</td>
<td>9 72 39</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.17 right Precuneus</td>
<td>31 24 66 18</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.18 right Precuneus</td>
<td>15 69 39</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.19 Left Posterior midbrain</td>
<td>33 -15 54</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.20 Right Posterior midbrain</td>
<td>7 20 -20</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.21 Left Caudate tail</td>
<td>-24 23 52</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.22 Right Parahippocampal gyrus</td>
<td>24 30 12 30</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
<tr>
<td>4.23 Left Parahippocampal gyrus</td>
<td>36 21 33 15</td>
<td>2591</td>
<td><0.001</td>
<td><0.001</td>
<td>---</td>
</tr>
</tbody>
</table>

The table lists the peak voxels of all clusters which showed significant activation \((p_{\text{FWE}})\) in the contrast ‘intentional empathy for familiar neutral’ vs ‘baseline’ for both groups (inclusive masking). Voxels, which were not included in a cluster of minimum 10 voxels, are not counted in. \((x, y, z)\) reflects the number of significant voxels inside the cluster; \(p_{\text{FWE}}(C)\) and \(p_{\text{FWE}}(G)\) show the probability that a cluster of the given size might appear as a false positive in the group of Chinese (C) and Germans (G); the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors ‘task’, ‘emotion’, and ‘familiarity’: \(e > c\) ‘intentional empathy’ vs ‘control’; a > n: ‘intentional empathy for familiar angry’ vs ‘intentional empathy for familiar neutral’; f > u: ‘intentional empathy for familiar neutral’ vs ‘intentional empathy for unfamiliar neutral’; \(p \leq 0.1\); *: \(p \leq 0.05\); **: \(p \leq 0.01\).

How culture affects brain activity during intentional empathy with anger

As behavioral studies show, individuals from independent and interdependent cultures differ in their attitude towards anger, which is less often expressed and relatively more controlled in interdependent cultures (Markus and Kitayama, 1991; Miyake et al., 1986; Zhou et al., 2004). The DLPC is the key brain region in the neuronal mechanisms of this emotional control. Why do individuals from interdependent cultures engage their DLPC in order to control their anger responses? The answer to this is twofold: (i) because they are relatively more afraid to be overwhelmed by negative emotions (as shown by a significant difference in ‘personal distress’ and the correlation of ‘personal distress’ scores with DLPC activity) and (ii) because they value harmony more than individuals from independent cultures (Markus and Kitayama, 1991) and have therefore a higher motivation to maintain harmony by the suppression of anger. Individuals from independent cultures in contrast do not only express anger more often, they also can tolerate anger better in social interactions (Adam et al., 2010). Our data suggest that the increased affective sharing (Fan et al., 2011; Jabbi et al., 2007; Keysers and Gazzola, 2007; Singer et al., 2004) the MI is involved in perspective taking (Lamm et al., 2007).
The table presents the centers of mass of all clusters which showed significant differences between Chinese and Germans in the contrast 'intentional empathy for familiar angry' baseline'. Voxels with $p_{t} < 0.05$ were masked. In addition, voxels were masked, which were not included in a cluster of minimum 10 voxels. (x, y, z) are coordinates referring to the Talairach and Tournoux stereo-tactic space; r reflects the number of significant voxels inside the cluster; p_{t} shows the probability that a cluster of the given size might appear as a false positive; the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors 'task', 'emotion', and 'familiarity'; e: c: 'intentional empathy' control'; a: n: 'intentional empathy for familiar angry'/'intentional empathy for familiar neutral'; f: u: 'intentional empathy for familiar neutral'/'intentional empathy for unfamiliar neutral'; (\cdot): $p < 0.1$; *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$.

Table 5

<table>
<thead>
<tr>
<th>Region</th>
<th>BA</th>
<th>x, y, z [mm]</th>
<th>t</th>
<th>n</th>
<th>p_{t}</th>
<th>Modulation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese> Germans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.01 Left Dorsolateral prefrontal cortex</td>
<td>9</td>
<td>-45</td>
<td>-9</td>
<td>33</td>
<td>5.555</td>
<td>0.068</td>
</tr>
<tr>
<td>Germans> Chinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.02 Left Middle insula</td>
<td>13</td>
<td>-39</td>
<td>-3</td>
<td>6</td>
<td>6.122</td>
<td>0.145</td>
</tr>
<tr>
<td>5.03 Right Inferior temporal gyrus</td>
<td>20</td>
<td>54</td>
<td>18</td>
<td>18</td>
<td>5.383</td>
<td>0.562</td>
</tr>
</tbody>
</table>

This table provides the centers of mass for all clusters that showed significant differences between Chinese and Germans in the contrast ‘intentional empathy for familiar angry’ baseline’. Voxels with $p_{t} < 0.05$ were masked. Additionally, voxels were masked, which were not included in a cluster of minimum 10 voxels. (x, y, z) are coordinates referring to the Talairach and Tournoux stereo-tactic space; r reflects the number of significant voxels inside the cluster; p_{t} shows the probability that a cluster of the given size might appear as a false positive; the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors ‘task’, ‘emotion’, and ‘familiarity’; e: c: ‘intentional empathy’ control; a: n: ‘intentional empathy for familiar angry’/‘intentional empathy for familiar neutral’; f: u: ‘intentional empathy for familiar neutral’/‘intentional empathy for unfamiliar neutral’; (\cdot): $p < 0.1$; *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$.

Conclusion

In summary, our brain imaging findings indicate that the interdependent lifestyle, which implies a relative high appreciation of harmony and lower anger acceptance, leads to less neuronal activity in regions responsible for the understanding of social intentions (inferior and superior temporal gyrus, middle insula) during intentional empathy with angry faces.

High ratings of ‘personal distress’ explained high activity in the dorsolateral prefrontal cortex during intentional empathy with angry faces — probably as a means to prevent emotional over-arousal.

Our findings are in concordance with previous behavioral studies and provide a neurobiological basis for the observed cultural differences between interdependent and independent cultures in their handling with anger.

Acknowledgments

The authors thank Yan Fan and Yina Ma for their help in the preparation of the stimuli. We further thank for the support by Claus Tempelmann and the staff of the Department of Neurology of the Otto-von-Guericke-University of Magdeburg in the acquisition of pilot data. We also thank Niall Duncan for helpful propositions to the script. Financially, this study was supported by the Science and Technology Fellowship Programme in China (STFP-25, to M.G.). We are also indebted to the German Research Foundation (DFG-SFB 779-A6), the Hope of Depression Research Foundation (HDRF), the CRC and the EJLB Michael Smith Foundation for providing generous financial support (to G.N.), and to the National Natural Science Foundation of China (Project 30910102901, 91024032), the National Basic Research Program of China (973 Program 2010CB833903), and the Fundamental Research Funds for the Central Universities (providing generous financial support to S.H.).

References

This matter is even more complicated though: as has been shown by Chiao and Blizinsky (2010), genetic differences are inextricably intertwined with cultural differences. However, in this study we concentrated on the effect of culture on brain activity, whereas it was not our aim to highlight the causes of cultural differences.

Limitations

Concerning some limitations of our study, we would like to mention that the design of our study did not include an ‘unfamiliar angry’ condition. To investigate the effect of familiarity, we hence relied on the comparison of ‘familiar neutral’ and ‘unfamiliar neutral’ in future studies, it might be interesting to investigate the effect of familiarity in the presence of emotions.

Another limitation concerns the possible bias of genetic differences between the groups of Chinese and Germans, since all Chinese were members of the East Asian race, whereas the Germans were members of the Caucasian race. Hence, we cannot exclude for certain, that genetic (and not cultural) differences between both groups are responsible for the differences in brain activity. If one wanted to investigate cultural differences and at the same time control for genetic differences, the ideal (but rare) subjects would have been Chinese (raised in China) and Germans who are of Chinese origin but born in Germany (and ideally raised by a German family) — and vice versa.

tolerance of anger in less interdependent individuals is related to increased neuronal activity in brain regions responsible for the understanding of social intentions (TPJ, ITG, STG, and MI).

In contrast to our initial hypotheses we did not find culture based differences in neuronal activity of key empathy regions such as the AI, ACC, or IFG. These regions are reliably involved in basic empathic processes. The AI is responsible for interoceptive processing and is crucially involved in the conscious processing of emotions (Craig, 2002, 2004, 2009) and affective sharing (Fan et al., 2011; Jabbi et al., 2007; Keysers and Gazzola, 2007; Singer et al., 2004). The ACC was in a recent review article by Shackman et al. (2011) described as being responsible for the integration of negative affect, cognitive control, and pain as well as the generation of “aversely motivated behavior”. In addition, the ACC has been found to be active during emotional empathy (including empathy with positive and neutral emotions) in several studies (Blair et al., 1999; Carr et al., 2003; de Greck et al., 2011; Hooker et al., 2008; Ochsner et al., 2004a). The IFG is a crucial part of the human mirror neuron system (MNS), a system which was first detected in monkeys (Ferrari et al., 2003; Gallesse et al., 1996; Rizzolatti and Craighero, 2004). The MNS consists of brain areas which are activated during the generation of actions and also during the perception of (the same) actions performed by others (Carr et al., 2003; Grèzes et al., 2003; Iacoboni, 2005; Iacoboni et al., 1999; Kaplan and Iacoboni, 2006). In addition, the human MNS including the IFG is reliably activated during empathy (Carr et al., 2003; de Greck et al., 2011; Kaplan and Iacoboni, 2006). One possible explanation for this negative finding, i.e. a lack differences in neuronal activity of AI, ACC, and IFG between both groups, might be that these regions provide empathic processes which are too basic to be influenced by cultural differences with regard to interdependence.

The table presents the centers of mass of all clusters which showed significant differences between Chinese and Germans in the contrast ‘intentional empathy for familiar angry’ baseline’. Voxels with $p_{t} < 0.05$ were masked. In addition, voxels were masked, which were not included in a cluster of minimum 10 voxels. (x, y, z) are coordinates referring to the Talairach and Tournoux stereo-tactic space; r reflects the number of significant voxels inside the cluster; p_{t} shows the probability that a cluster of the given size might appear as a false positive; the last three columns list the significances of the paired t-tests (two-sided) investigating the effects of the factors ‘task’, ‘emotion’, and ‘familiarity’; e: c: ‘intentional empathy’ control; a: n: ‘intentional empathy for familiar angry’/‘intentional empathy for familiar neutral’; f: u: ‘intentional empathy for familiar neutral’/‘intentional empathy for unfamiliar neutral’; (\cdot): $p < 0.1$; *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$.)
Blair, R.J., Morris, J.S., Frith, C.D., Perrett, D.I., Dolan, R.J., 1999. Dissociable neural re-
sponses to facial sadness and anger. Brain 122 (Pt 5), 883–893.
mechanism of empathy: A relay from neural systems for imitation to limbic areas.
study of perception and interpretation of complex intentional movement pat-
Chen, S.X., Chan, B.M., Bond, M.H., Stewart, S.M., 2006. The effects of self-efficacy and re-
 lationship harmony on depression across cultures applying level-oriented and
Cheung, R.Y., Park, I.J., 2010. Anger suppression, interdependent self-construal, and de-
pression among asian american and european american college students. Cult. Di-
 vers. Ethnic Minor. Psychol. 16 (4), 517–525.
Jabbri, M., Keysers, C., 2008. Inferior frontal gyrus activity triggers anterior insula re-
sponse to emotional facial expressions. Emotion 8 (6), 775–780.
Jabbri, M., Swart, M., Keysers, C., 2007. Empathy for positive and negative emotions in the
381–409.
Kaplan, J.T., Iacoboni, M., 2006. Getting a grip on others: mirror neurons, inten-
Kim, H., Markus, H.R., 1999. Deviance or uniqueness, harmony or conformity? a cultural
related functional magnetic resonance imaging study of voluntary and stimulus-
Kobayashi, C., Glover, G.H., Temple, E., 2007. Cultural and linguistic effects on neural bas-
Kwesigira, Z., 2000. The concept of anger: universal or culture specific? Psychopathol-
ogy 33 (4), 159–170.
Kwan, V.S., Bond, M.H., Singelis, T.M., 1997. Pancultural explanations for life satisfac-
tion: adding relationship harmony to self-esteem. J. Pers. Soc. Psychol. 73 (5),
1035–1051.
Lamm, C., Batson, C.D., Decety, J., 2007. The neural substrate of human empathy: effects of per-
Liew, S.S., Han, S., Al-Aidroos, Y., 2011. Familiarity modulates mirror neuron and
mentalizing regions during intention understanding. Hum. Brain Mapp. 32,
Louhead, J., Gu, R.C., Elliott, M., Gur, R.E., 2008. Neural circuitry for accurate identifi-
cation of facial emotions. Brain Res. 1194, 37–44.
dorsolateral prefrontal and anterior cingulate cortex in cognitive control.
NeuroImage 12 (4), 588–596.
Mathur, V.A., Harada, T., Lipe, T., Chiao, J.Y., 2010. Neural basis of extraordinary empa-
tion (JACFEE) and Neutral Faces (JACNeuF). University of California, San Francisco.
Min, S.K., 2008. Clinical correlates of Iwa-baying and a proposal for a new anger disor-
Min, S.K., Suh, S.Y., Song, K.J., 2009. Symptoms to use for diagnostic criteria of Iwa-
baying, an anger syndrome. Psychiat. Invest. 6 (1), 7–12.
Mitchell, J.P., 2008. Activity in right temporo-parietal junction is not selective for theory-of-
tion in Japan, chapter Issues in socioemotional development. Freeman 239.
242–249.
Ochsner, K.N., Kringlen, K., Ludlow, D.H., Hanelin, J., Ramchandran, T., Glover, G.,
Mackey, S.C., 2004a. Reflecting upon feelings: an fMRI study of neural systems sup-
porting the attribution of emotion to self and other. J. Cogn. Neurosci. 16 (10),
1746–1772.
Ochsner, K.N., Ray, R.D., Cooper, J.C., Robertson, E.R., Chopra, S., Gabrieli, J.D., Gross, J.J.,
2004b. For better or for worse: neural systems supporting the cognitive down- and
Park, I.J., Kim, P.Y., Cheung, R.Y., Kim, M., 2010. The role of culture, family processes,
and anger regulation in Korean American adolescents’ adjustment problems. Am.
J. Orthopsychiatry 80 (1), 92–107.
Phillips, M.L., Young, A.W., Senior, C., Brummer, M., Andrew, C., Calder, A.J., Bullmore,
neural substrate for perceiving facial expressions of disgust. Nature 389 (6650),
495–498.
159–180.
159–180.
23 (3), 43–66.